3.162 \(\int \cot (c+d x) (a+a \sec (c+d x))^{5/2} \, dx\)

Optimal. Leaf size=95 \[ \frac{2 a^2 \sqrt{a \sec (c+d x)+a}}{d}+\frac{2 a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a \sec (c+d x)+a}}{\sqrt{a}}\right )}{d}-\frac{4 \sqrt{2} a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a \sec (c+d x)+a}}{\sqrt{2} \sqrt{a}}\right )}{d} \]

[Out]

(2*a^(5/2)*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/d - (4*Sqrt[2]*a^(5/2)*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/
(Sqrt[2]*Sqrt[a])])/d + (2*a^2*Sqrt[a + a*Sec[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0891302, antiderivative size = 95, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {3880, 84, 156, 63, 207} \[ \frac{2 a^2 \sqrt{a \sec (c+d x)+a}}{d}+\frac{2 a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a \sec (c+d x)+a}}{\sqrt{a}}\right )}{d}-\frac{4 \sqrt{2} a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a \sec (c+d x)+a}}{\sqrt{2} \sqrt{a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(2*a^(5/2)*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/d - (4*Sqrt[2]*a^(5/2)*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/
(Sqrt[2]*Sqrt[a])])/d + (2*a^2*Sqrt[a + a*Sec[c + d*x]])/d

Rule 3880

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Dist[(d*b^(m - 1)
)^(-1), Subst[Int[((-a + b*x)^((m - 1)/2)*(a + b*x)^((m - 1)/2 + n))/x, x], x, Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rule 84

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Simp[(f*(e + f*x)^(p -
 1))/(b*d*(p - 1)), x] + Dist[1/(b*d), Int[((b*d*e^2 - a*c*f^2 + f*(2*b*d*e - b*c*f - a*d*f)*x)*(e + f*x)^(p -
 2))/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 1]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \cot (c+d x) (a+a \sec (c+d x))^{5/2} \, dx &=\frac{a^2 \operatorname{Subst}\left (\int \frac{(a+a x)^{3/2}}{x (-a+a x)} \, dx,x,\sec (c+d x)\right )}{d}\\ &=\frac{2 a^2 \sqrt{a+a \sec (c+d x)}}{d}+\frac{a \operatorname{Subst}\left (\int \frac{a^3+3 a^3 x}{x (-a+a x) \sqrt{a+a x}} \, dx,x,\sec (c+d x)\right )}{d}\\ &=\frac{2 a^2 \sqrt{a+a \sec (c+d x)}}{d}-\frac{a^3 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+a x}} \, dx,x,\sec (c+d x)\right )}{d}+\frac{\left (4 a^4\right ) \operatorname{Subst}\left (\int \frac{1}{(-a+a x) \sqrt{a+a x}} \, dx,x,\sec (c+d x)\right )}{d}\\ &=\frac{2 a^2 \sqrt{a+a \sec (c+d x)}}{d}-\frac{\left (2 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{-1+\frac{x^2}{a}} \, dx,x,\sqrt{a+a \sec (c+d x)}\right )}{d}+\frac{\left (8 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{-2 a+x^2} \, dx,x,\sqrt{a+a \sec (c+d x)}\right )}{d}\\ &=\frac{2 a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+a \sec (c+d x)}}{\sqrt{a}}\right )}{d}-\frac{4 \sqrt{2} a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+a \sec (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{d}+\frac{2 a^2 \sqrt{a+a \sec (c+d x)}}{d}\\ \end{align*}

Mathematica [A]  time = 0.09055, size = 83, normalized size = 0.87 \[ \frac{2 (a (\sec (c+d x)+1))^{5/2} \left (\sqrt{\sec (c+d x)+1}+\tanh ^{-1}\left (\sqrt{\sec (c+d x)+1}\right )-2 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{\sec (c+d x)+1}}{\sqrt{2}}\right )\right )}{d (\sec (c+d x)+1)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(2*(a*(1 + Sec[c + d*x]))^(5/2)*(ArcTanh[Sqrt[1 + Sec[c + d*x]]] - 2*Sqrt[2]*ArcTanh[Sqrt[1 + Sec[c + d*x]]/Sq
rt[2]] + Sqrt[1 + Sec[c + d*x]]))/(d*(1 + Sec[c + d*x])^(5/2))

________________________________________________________________________________________

Maple [A]  time = 0.149, size = 124, normalized size = 1.3 \begin{align*} -{\frac{{a}^{2}}{d}\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( \sqrt{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ({\frac{\sqrt{2}}{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) +4\,\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ({\frac{1}{\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}}} \right ) -2 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)*(a+a*sec(d*x+c))^(5/2),x)

[Out]

-1/d*a^2*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*
(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+4*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/(-2*cos(d*x+c)/(cos(d*x+
c)+1))^(1/2))-2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \cot \left (d x + c\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^(5/2)*cot(d*x + c), x)

________________________________________________________________________________________

Fricas [A]  time = 1.6934, size = 782, normalized size = 8.23 \begin{align*} \left [\frac{2 \, \sqrt{2} a^{\frac{5}{2}} \log \left (-\frac{2 \, \sqrt{2} \sqrt{a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) - 1}\right ) + a^{\frac{5}{2}} \log \left (-2 \, a \cos \left (d x + c\right ) - 2 \, \sqrt{a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) - a\right ) + 2 \, a^{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{d}, \frac{2 \,{\left (2 \, \sqrt{2} \sqrt{-a} a^{2} \arctan \left (\frac{\sqrt{2} \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{a \cos \left (d x + c\right ) + a}\right ) - \sqrt{-a} a^{2} \arctan \left (\frac{\sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{a \cos \left (d x + c\right ) + a}\right ) + a^{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}\right )}}{d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[(2*sqrt(2)*a^(5/2)*log(-(2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c) - 3*a*cos(d*x
 + c) - a)/(cos(d*x + c) - 1)) + a^(5/2)*log(-2*a*cos(d*x + c) - 2*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x +
 c))*cos(d*x + c) - a) + 2*a^2*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)))/d, 2*(2*sqrt(2)*sqrt(-a)*a^2*arctan(sq
rt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(a*cos(d*x + c) + a)) - sqrt(-a)*a^2*arcta
n(sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(a*cos(d*x + c) + a)) + a^2*sqrt((a*cos(d*x +
c) + a)/cos(d*x + c)))/d]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+a*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 4.64374, size = 159, normalized size = 1.67 \begin{align*} -\frac{\sqrt{2} a^{5}{\left (\frac{\sqrt{2} \arctan \left (\frac{\sqrt{2} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}}{2 \, \sqrt{-a}}\right )}{\sqrt{-a} a^{2}} - \frac{4 \, \arctan \left (\frac{\sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}}{\sqrt{-a}}\right )}{\sqrt{-a} a^{2}} - \frac{2}{\sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} a^{2}}\right )} \mathrm{sgn}\left (\cos \left (d x + c\right )\right )}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

-sqrt(2)*a^5*(sqrt(2)*arctan(1/2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/(sqrt(-a)*a^2) - 4*arct
an(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/(sqrt(-a)*a^2) - 2/(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*a^2))
*sgn(cos(d*x + c))/d